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Arginine, one of the natural amino acids, is found in the active backbone o, would affect the preferred binding modes. Moreover
sites of numerous enzymes. The guanidinium moiety of the arginine the aromatic substituents (Ar), arranged withsymmetry, would
residue is known to contribute to the stabilization of anionic reaction create an efficient chiral environment to discriminate between the
intermediates through electrostatic interactions and to substrateenantiotopic faces of the enolate form 2fTaking advantage of
recognition at the active site through hydrogen bonding.is the uniqueness df as a platform for asymmetric induction at the
anticipated that these characteristics of the guanidinium ion coupleda-carbon of 3, we designed to study the enantioselective
with the strong basic character of its conjugate base, guanidine, hydrazination ofx-monosubstituted 1,3-dicarbonyl compoungs (
will make it suitable as an asymmetric base cataystn attractive (R = H) with azodicarboxylates4] as the electrophilic nitrogen
class of organocatalyst&ecently we successfully developed novel source$8 The method provides efficient access to the construction
chiral guanidine basedl) as highly active and enantioselective of a nitrogen-substituted quaternary stereocenter in an optically
catalysts for a 1,4-addition reaction of nitroalkenes with 1,3- active form? Herein we describe highly efficient and enantio-
dicarbonyl compounds.The characteristic feature df is the selective electrophilic aminations catalyzed by a novel axially chiral
introduction of the axially chiral binaphthyl backbone with a nine- guanidine 2), as represented by eq 1.
membered-ring structure (Figure 1a). In our continued efforts to
develop efficient chiral guanidine catalysts, we designed a new type o9 n-BoC (R)-2a (0.05 mol%) Q H”."Boc
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of axially chiral guanidine2) with a seven-membered-ring structure N THF, —60 °C, 4 h (quant.) X Boc
(Figure 1b). The corresponding protonated forms, guanidinium ion 3a 4a tBu (Ri::E‘
1" and 2/, both allow for the formation of multi-hydrogen bonds 2a Ar= § O O 07% 6
through the N-H protons; however, the guanidinium idh is +Bu

particularly interesting as it hd% symmetry. We hence envisioned

o O o O o O o O
using the newly designed catalys?) (to facilitate asymmetric é/“\oa @é)koa XMY /K&/Y
induction at thea-carbon of unsymmetrically substituted 1,3- R
3c

dicarbonyl compounds3} (X = Y). As illustrated in Figure 1c, 3b S e o R MO,
two binding modes of the ion pairs would be generated f@m 3f X=Et Y=OtBu R=Me ' :
along with an enolate form & through multi-hydrogen-bonding 3g X =Me, Y =Ot-Bu, R = Et

. . 3h: X=H, Y=0tBu R=M
interactions between oxygen atoms and theHNprotons of2'. It ’ ¢

is anticipated that differences in the stereoelectronic nature of We began by investigating the effects of substituent (Ar) of
unsymmetrical substituents (X, Y) & as well as the aromatic  catalyst ). Electrophilic amination of cyclig3-keto ester 3a)
substituents (Ar) introduced at the 3@®sitions of the binaphthyl employing ditert-butyl azodicarboxylated@) was conducted at60

°C using 2 mol % of. The representative results are summarized
in Table 1. We first employed 3,5-diphenylphenyl, which served
as the efficient substituent in the nine-membered-ring guanidine
catalyst (),>°but poor asymmetric induction was observed in the
catalysis by2b (entry 1). We speculated that the reach of the steric
demand exerted by the aromatic substituents is important in
providing an efficient chiral environment around the substrate
recognition site at the guanidine moiety. We thus extended the reach
of the aromatic substituents by introducing an additional group at
the para position of the aromatic ring; for this purpose a series of

(c) R R

XT%F\/Y XT'%\(Y p-biphenyl derivatives%a, 2c—_e) was examined (entries—_ZS). As
il el expected, the less sterically hindered but further reaghisighenyl
N H H 2c led to a slight increase in enantioselectivity compared to the
0 H,ﬁ FLH Ar Hf"l‘%"l‘y Ar 3,5-diphenylphenyl2b (entry 1 vs 2). A dramatic increase in
N N enantioselectivity was achieved by employRdy which possesses
»—\ jz( —\ j=( a 3,5-diphenyl on the terminal ring of thebiphenyl substituent
e (entry 3). Further modifications at the 3,5-positions of the terminal
;’gg’ﬁe i'hirf—j) Au)gr?ilgncehmhgg;?ei?\ir;ﬁevrﬂg]e?eiger_inr;;r(;]r?grifsd ':2?3%2;(1 phenyl group exhibited marked effects on both catalytic efficiency
form,yacz syrgmetric guanidinium ionZ); (c) two binding m(?des of the gnd asymmetrlc Inducthn (entrlgs 4 an_d 5); the uséaﬁesulted
ion pairs derived fron®2 with enolate form of X&OCHRG=0Y (3) (X in a quantitative formation oba in 5 min along with excellent
=Y). enantioselectivity, at 97% ee (entry 5). We also found that the steric
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;’acl)?/e 1 IEnantioselngve /I\min(%ti()m thithyld, box] @ between cyclic5a and acyclic 5d could be ascribed to the
-Oxocyclopentanecarboxylate (3a) with Azodicarboxylates ; f i ; ;
Catalyzed by Various Axially Chiral Guanidines (2)3 dnfferences |n_the preferred mode _of blndlpg (Figure 1c). Fc_;ll_owmg
- this assumption, the low enantioselectivity observed 3oris
entry 2 4 5  tme"  ee(% presumably due to comparable formation of the two modes of
1 2b: Ar =3,5-PhCeHs— 4a 5a 8h 18 binding.
g gg ﬁr = i"(:?t‘g'ggc HyCoH Z‘a ga i E gg In conclusion, we have developed an efficient organocat&lyst
AN =4-(5,9- 6M13)CeHa— a a . . . P .
4 2e Ar=4{35-(CR)CeH3}CsHs— 4a 5a 5min 93 as a new famlly of axua}ly chiral gugnldlng ba;es that faC|I|tate.s
5 2a Ar=4-(3,5t-BuCcHs)CsHa— 4a 5a  5min 97 the highly e_nantloselec_tlve electrophilic amination of unsymmetri-
6 2a 4 5ab 5min 89 cally substituted 1,3-dicarbonyl compounds with high catalytic
7 2a 4¢ 5ac 30min 50 activity. Further studies are in progress to elucidate the dramatic

. ! ' ) changes in stereochemical outcome observed between cyclic and
aUnless otherwise noted, all reactions were carried out with 0.002 mmol

of (R)-2 (2 mol %), 0.11 mmol 0Ba, and 0.10 mmol ofin 1 mL of THF acyclic systems.

at —60 °C. P Time required for completion of the reactiochEnantiomeric . L
excess was determined by chiral HPLC analysis. Absolute configuration ~Acknowledgment. This work was supported by a Grant-in-Aid

was determined to bR for 5a and5ac See Supporting Information for ~ for Scientific Research on Priority Areas “Advanced Molecular
details.? 4b: Diisopropyl azodicarboxylat€’.4c: Dibenzyl azodicarbox-  Transformations of Carbon Resources” (Grant No. 18037003) from
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demand of azodicarboxylated) (s crucial to attain high asymmetric ~ Japan.

induction (entries 6 and 7). As highlighted in eq2B is clearly

. . ; Supporting Information Available: Representative experimental
superior to reported organocatalystfor the enantioselective Pp 9 P b

inati ith t to th talvst loadi talvii tivit procedure, spectroscopic data for axially chiral guanidine catalgpts (
amination with respect to the catalyst loading, catalytic activity, and electrophilic amination products){and determination of absolute

and asymmetric induction. The enantioselectivities and the yields stereochemistry daand5d. This material is available free of charge
were entirely maintained even when we lowered the loadir@gof i3 the Internet at http://pubs.acs.org.

from 2 to 0.05 mol % (entry 5 vs eq 1).
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